

PROBABILITY
SPACES

THE IDEA We begin prob notion of a randan experiment. A repeatable process that does not have a determinate out come.

We begin to abstract this by formalising
sample space: Ω set of all autcendes
the: Sample Space: Ω set f all
Events: Subsets $A \subset \Omega$ such that we can define probability m it.
But note that in the general case we cannot use ARBITRARY subsets as events.
SETS
we denote the union of disjoint sets $D U E=D+E$ The symetric difference of a set is: $A \Delta B=A \backslash B+B \backslash A$ $=(A \cup B) \backslash(A \cap B)$
$\begin{aligned} & \text { INDICATORS: For an arbitrary } \\ & \text { set } A \text { the indicator functor }\end{aligned} \|_{A}(\omega)=\left\{\begin{array}{l}1, \omega \in A \\ 0, \omega \notin A\end{array}\right.$
For two sets $A \notin B: \mathbb{\|}_{A}=1-\mathbb{\|}_{A}, \mathbb{\|}_{A \cup B}=\max \left\{\|_{A}, \mathbb{N}_{B}\right\}$

$$
\left\|_{A \cap B}=\mathbb{\|}_{A}\right\|_{B},\left\|_{A D B}=\left|\|_{A}-\mathbb{\|}_{B}\right|\right.
$$

EVENTS \& ALGEBRAS
We need that our events are closed under cirtain operations so that when we manipulate events we still
have events. have events.
A family \mathcal{F} of subsets of Ω is a σ-Algebra if it satisfies

$$
A \cdot 1) \Omega \in \mathcal{F}
$$

$$
A \cdot 2) A \in \mathcal{F} \Rightarrow A^{c} \in \mathcal{F}
$$

Note that from DeiMargans

$$
A \cdot 3) A_{1}, A_{2}, \cdots \in \mathcal{F}
$$

Low this also implies
closed under countable intersections.

Thus we will now call the elements of an appropriate σ-Algebra generated on subsets if Ω Event!

T: For two σ-Algebras $\mathcal{F}_{1} \mathcal{F}_{2}$ on a conman sample space Ω, then $\mathcal{F}_{1} \cap \mathcal{F}_{2}$ is also a σ-Algebra.
T: $\mathcal{F}_{n}, n \in \mathbb{N}, \sigma$-Algebras on a common sample space $\Longrightarrow \bigcap_{n \geqslant 1} \mathcal{F}_{n}$ is a σ-Algebra.
Given some Ω how do we create a σ-Algebra?
σ ALGERA GENERATED:
(1) For a single $A \subset \Omega, \sigma(A)=\left\{\phi, A, A^{c}, \Omega\right\}$
(2) For $G=\left\{A_{1}, \ldots, A_{n}\right\}$ a finite partition of Ω

$$
\sigma(G)=\left\{\sum_{i \in I} A_{i}: I \subset\{1, \ldots, n\}\right\}
$$

$=$ or an arbitrary collection of sets, consider that we can form a partition by taking all possible intersections.
T: For any family of subsets of Ω, G, \exists a unique σ Algebra, $\sigma(S)$ st. $G \subset \sigma(G)$
$\$[H$ a σ Algebra on $\Omega \notin S \subset H \Rightarrow \sigma(S) \subset H]$

BOREC SET: This is the cannonical σ belg

$$
\begin{aligned}
& B(\mathbb{R})=\sigma\{(a, b] \mid a, b \in \mathbb{R}, a<b\} \\
& B\left(\mathbb{R}^{m}\right)=\sigma\left\{\prod_{i=1}^{m}\left(a_{i}, b_{i}\right] \mid a_{i}, b_{i} \in \mathbb{R}, a_{i}<b_{i}\right\}
\end{aligned}
$$

H_{n} occur i.0. slide 11 .

PROBABILITY SPACE
A set, Ω, pained with a o All generated on it's subsets, \mathcal{F}, is called a measurable space ($\Omega, ₹$)
A probability on (Ω, \mathcal{F}) is a function $\mathbb{P}: \mathcal{F} \longrightarrow \mathbb{R}$ satisfying
$P \cdot 1) P(A) \geqslant 0, A \in \mathcal{F}$
PR) $P(\Omega)=1$
p.3) For any pairwise dicjont $A_{1}, A_{2}, \ldots \in \mathcal{F} \quad P\left(\bigcup_{j=1}, A_{j}\right)=\sum_{j=1} P\left(A_{j}\right)$
The ripple $(\Omega, \mathcal{F}, \mathbb{P})$ is called a prob space.
Ex. Degenerate Dist at a fixed $\omega \in \Omega$

$$
\varepsilon_{\omega}(A)=\|_{A}(\omega)
$$

$$
\begin{aligned}
& E \cdot \text { counting }=\sum_{n=1}^{\text {measure on }} \varepsilon_{n}(B), \mathbb{N}, B \in P(\mathbb{N}) .
\end{aligned}
$$

From these axians we can further deduce these properties of the
T: $P(\phi)=0, T: P\left(\bigcup_{n=1}^{m} A_{j}\right)=\sum_{n=1}^{m} P\left(A_{j}\right)$
$T: P\left(A^{c}\right)=1-P(A)$ For pairwise disjoint $A, \ldots, A m$
$T: A \subset B \Rightarrow P(B \backslash A)=P(B)-P(A) \Rightarrow P(A) \leqslant P(B)$
T: $P(A \cup B)=P(A)+P(B)-P(B \cap A)$
T : Soles lneq: $P\left(\bigcup_{j=1} A_{j}\right) \leq \sum_{j \geqslant 1} P\left(A_{j}\right)$
T : Bored - Cantelli: $\sum_{n \geqslant 1} P\left(A_{n}\right)<\infty \Rightarrow P\left(A_{n}\right.$ i.0. $)=0$
CONTINUITY PROPERTIES:
The infinite case of the countable additivity property of ar probability is responsible
for important continuity properties of the \mathbb{P}

$$
\begin{aligned}
A_{n} \uparrow A & \Longleftrightarrow A_{1} \subset A_{2} C \cdots \not \bigcup_{n \geqslant 1} A_{n}=A \\
A_{n \rightarrow \infty} \downarrow A & \Longleftrightarrow A_{1} \supset A_{2} \supset \cdots \not \bigcap_{n \geqslant 1} A_{n}=A
\end{aligned}
$$

$T: A$ function $\mathbb{P}: \mathcal{F} \rightarrow \mathbb{R}$ satisfies $P .1, P .2 \neq$ has finite additivity. THEN (the following ave \Leftrightarrow) \mathbb{P} has property $P \cdot 3$

Probabilities on \mathbb{R} are defined on the measurable space ($\mathbb{R}, \mathcal{B}(\mathbb{R}))$.
BUT $B(\mathbb{R})$ is HUGE! HW do
PROBABILTIES ON \mathbb{R}. We specify the probability on all events in $B(R)$ for a P ?

DISTRIBUTION FUNCTION:
It this out we can entirely specify a P by its distribution function.
Distribution Function (D.F) of a probability P on \mathbb{R} is the function $F_{p}: \mathbb{R} \longrightarrow \mathbb{R}, t \longmapsto P(-\infty, t]$
T: For any probability P on \mathbb{R} its D.F.F sutisfus all of...
D.1) Non Decreasing: $s<t \Rightarrow F(s) \leqslant F(t)$
D.2) Right continuous: $F(t)=F(t+)$
D. 3) $\lim _{t \rightarrow-\infty} F(t)=0 \quad \lim _{t \rightarrow \infty} F(t)=1$

T: For any $F: \mathbb{R} \rightarrow \mathbb{R}$ satisfying $D .1-3$ there corrospands EXACTLY ONE probability P m $B(\mathbb{R})$.

CLASSIFYING \mathbb{P} on \mathbb{R}
P is Discrete on \mathbb{R}
$\Longleftrightarrow(\exists \subset \subset \mathbb{R})(C$ countable $\& P(C)=1)$

$$
\begin{aligned}
& \sum p_{i}=1 \quad \& \quad p=\sum p_{i} \varepsilon_{t} \\
& \Leftrightarrow \exists\left\{t_{i} \xi_{i \geqslant 1} \subset \mathbb{R} \nexists \exists \xi_{p_{i}>0 \xi_{i \geqslant 1}}\right. \text { such that } \\
& \sum_{i} p_{i}=1 \& F_{p}(t)=\sum_{i} p_{i} \|\left(t_{i} \leq t\right)
\end{aligned}
$$

P is absolutely continues ($A \cdot C$) on \mathbb{R} if $\exists f_{p}: \mathbb{R} \rightarrow \mathbb{R}$ such that $F_{p}(t)=\int_{-\infty}^{t} f_{p}(x) d x$.
So A.C. distributions ane the ones with densities. Note that $f_{p}=F_{p}^{\prime}$ almost points of We discontinuity.
$T:$ Any function $f: \mathbb{R} \rightarrow \mathbb{R}$ that is
(1) $f \geqslant 0$ (2) Integrable (3) $\int f_{p} d x=1$ specifies a probabllits on \mathbb{R}.

A mixed distribution P is one such that for some $P \in(0,1) \quad P=p P_{d}+(1-p) R_{a}$ where P_{d} is discrete \& P_{a} is A.C.

A singular distributions are continuous but not A.c., they mont have a density however no single' point has a positive probability.

T: Any probability on \mathbb{R} has a unique representation of the form

$$
\begin{gathered}
P=\alpha_{d} P_{d}+\alpha_{a} P_{a}+\alpha_{s} P_{s}, \alpha_{i} \geqslant 0, \sum_{i} \alpha_{i}=1 \\
\rightarrow \text { Discrete }>_{\text {ATC }} \searrow_{\text {Singular. }}
\end{gathered}
$$

We naively think of a R.U. as a function of an outcome of a Rent bun experimed that captures some information about the experiment. We also however want to be able to calculate the probability of our R.V. mapping to a arrtain value (of set of vales). Thus va define a Random Variable (R.V) as a function $X: \Omega \rightarrow \mathbb{R}$ such that $\forall B \in B(\mathbb{R}) \quad X^{-1}(B) \in \mathcal{F}$.

$$
x^{-1}(B)=\{\omega \in \Omega \mid x(\omega) \in B\}
$$

T: For an arbitrary family of subsets of $\mathbb{R} \quad\left\{B_{\alpha} \mid \alpha \in I\right\}$

$$
\text { - } B_{\alpha} \subset B_{\beta} \Rightarrow x^{-1}\left(B_{\alpha}\right) \subset x^{-1}\left(B_{\beta}\right)
$$

$$
\text { - } \bigcup_{\alpha \in I} X^{-1}\left(B_{\alpha}\right)=X^{-1}\left(\bigcup_{\alpha \in I} B_{\alpha}\right)
$$

- $B_{\alpha} \cap B_{p}=\phi \Rightarrow X^{-1}\left(B_{\alpha}\right) \cap X^{-1}\left(B_{\beta}\right)$

$$
\text { - } x^{-1}\left(B_{k}^{c}\right)=\left[x^{-1}\left(B_{\alpha}\right)\right]^{c}
$$

Ex. Random indicator: For any event A, \mathbb{X}_{A} is a R.U. simple R.V.: $\sum_{i=1}^{n} a_{i} \mathbb{U}_{A_{i}}, a_{i} \in \mathbb{R}, A_{i} \in \mathcal{F}, i \leq n<\infty$
T : For a $R \cdot V . X, \sigma(X)=\left\{X^{-1}(B) \mid B \in B(\mathbb{R})\right\}$ s a σ Alg.

DISTRIBUTIONS OF RU.
The distribution of a $R \cdot v \times m(\Omega, \mathcal{F}, \mathbb{P})$ is defined as $P_{x}(B)=\mathbb{P}(x \in B), P_{x}: B_{B}(\mathbb{R}) \rightarrow \mathbb{R}$. This P_{x} is in fact a probability on \mathbb{R}.
Thus the distribution function of x is

$$
F_{x}(t)=P_{x}((-\infty, t))=\mathbb{P}(x \leq t)
$$

X is discrete $/ A \cdot C /$ singular if F_{X} is $D / A \cdot C / S$. Same for The survival function of X is $S_{x}(t)=1-F_{x}(t)$
Tho R.V. $x \notin y$ are identically distributed $\Leftrightarrow P_{x}=P_{y}$
FUNCTIONS OF REV:
T: X a R.V, g increasing $\left(g^{n} \geqslant 0\right) \&$ continuous on \mathbb{R} $\Longrightarrow y=g(x)$ is a R.U with D.F $F_{y}(t)=F_{x}\left(g^{-1}(t)\right)$
$T: X$ an A.C R.V, g cantinuensish diff open set $U(X \in U)=1$. $\Longrightarrow y=g(x)$ is A.C RV. $f_{y}(t)=\left|\frac{1}{d t} g^{-1}(t)\right| f_{x}\left(g^{-1}(t)\right)$ Note that we must also have that g is invertible \& that inverse is differecetiable.

For a D.F F the quartile function is $Q(x)=\inf \{t: F(t) \geq x\}, x \in(0,1)$
$T: U \sim U[0,1] \Rightarrow x=Q(U) \sim F$

RANDOM VECTORS
A Random Vector (R vac) $x=\left(x_{1}, \ldots, x_{n}\right): \Omega \rightarrow \mathbb{R}^{n}$
is a function such that $X^{\prime}(B) \in \mathcal{F}^{\prime} \quad \forall B \in B(\mathbb{R})$
$T: X=\left(X_{1}, \ldots, X_{n}\right)$ R.vec $\Longleftrightarrow\left(\forall_{i} X X_{i}\right.$ is a $\left.R \cdot v\right)$
$T: X=\left(x_{1}, \ldots, x_{n}\right)$ a $R \cdot v e c \notin g$ measurable $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$
$\Longrightarrow g(x)$ is a R.vec
We have the D.F. in the multivariate case as $F_{X}\left(t_{1}, \ldots, t_{n}\right)=\mathbb{P}\left(x_{1} \leqslant t, \ldots, x_{d} \leqslant t_{d}\right),\left(t_{1}, \ldots, t_{n}\right) \in \mathbb{R}^{n}$
$T: A_{n} A \cdot C$ dist has a density f_{x} satisfying

$$
F_{x}\left(t_{1}, \ldots, t_{n}\right)=\int_{-\infty}^{t_{1}} \ldots \int_{-\infty}^{t_{n}} f_{x}\left(x_{1}, \cdots, x_{n}\right) d x_{1}, \ldots d x_{n}
$$

$T:\left(X_{1}, \ldots, X_{n}\right)$ is discrete $\Longleftrightarrow\left(\forall_{i}\right)\left(X_{i}\right.$ is discrete $)$
$T:\left(X_{1}, \ldots, X_{n}\right)$ is A.C. $\Longrightarrow\left(\forall_{i}\right)\left(X_{i}\right.$ is $\left.A C\right)$

$$
f_{x_{i}}(x)=\int \ldots \int f_{x}\left(s_{1}, \ldots, x, \ldots, s_{n}\right) d s_{1} \ldots d s_{n}
$$

$T: X$ a R.eec, $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ has a smooth inverse $X A \cdot C \Rightarrow 4=y(X)$ is A.C R.U such that $\begin{aligned} f_{y}(t) & =\left|\operatorname{det}\left[g^{-1}(t)\right]\right| f_{x}\left(g^{-1}(t)\right) \\ \operatorname{det}(h(t))=J(h(t)) & =\operatorname{dt}\left[\frac{d h_{i}}{d t_{i}}\right] \text { is the jacobian. }\end{aligned}$

INDEPENDENCE
A collection of R.U. X_{1}, \ldots, X_{n} are indeppendut if $\left(\forall B_{1}, \ldots, B_{n} \in B(\mathbb{R})\left(P\left(X_{1} \in B_{1}, \ldots, X_{n} \in B_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \in B_{i}\right)\right)\right.$

This is a very general definition of independence however it is not convenient as of rede.
For showing some REVs ave independent we will
often use the forewing. often use the following.
$T: \begin{aligned} & X_{1}, \ldots, X_{n} R \cdot v \\ & \text { independent }\end{aligned} \Longleftrightarrow \forall t_{1}, \ldots, t_{n} \in \mathbb{R}$

$$
\begin{aligned}
& \forall t_{1, \ldots, t_{n} \in \mathbb{R}}^{F_{x_{1}, \ldots, x_{n}}\left(t_{1}, \ldots, t_{n}\right)=\prod_{i=1}^{n} F_{x_{i}}\left(t_{i}\right)}
\end{aligned}
$$

$T: \quad \begin{aligned} & \text { Discrete } \\ & X_{1}, \ldots, x_{n} R . N\end{aligned} \Longleftrightarrow \begin{aligned} & \forall t_{1}, \ldots, t_{n} \in \mathbb{R} \\ & P\left(x_{1}, t_{1}, \ldots, x_{n}, t_{n}\right)\end{aligned}$

$$
\begin{aligned}
& \text { Discrete } \\
& x_{1}, \ldots, x_{n}, N \\
& \text { independent }
\end{aligned} \Longleftrightarrow \begin{aligned}
& \forall t_{1}, \ldots, t_{n} \in \mathbb{R} \\
& P\left(x_{1}=t_{1}, \ldots, x_{n}=t_{n}\right)=\prod_{i=1}^{n} P\left(x_{i}=t_{i}\right)
\end{aligned}
$$

$T: A C R \cdot v \cdot x_{1}, \ldots, x_{n} \Longleftrightarrow \forall t_{1}, \ldots, t_{n} \in \mathbb{R}$
independent $x_{1} f_{x_{1}, \ldots, x_{n}}\left(t_{1}, \ldots, t_{n}\right)=\prod_{i=1}^{n} f_{x_{i}}\left(t_{i}\right)$
T: g_{i} measurable functions, x_{1}, \ldots, x_{n} independent $\Rightarrow y_{j}=g_{j}\left(x_{j}\right)$ are also independent.

Events A_{1}, \ldots, A_{n} are independent
$\Longleftrightarrow \mathbb{1}_{A_{1}}, \ldots, \|_{A_{n}}$ are. independent as R.V.
$T: \Leftrightarrow(\forall I \subset\{1, \ldots, n\})\left(P\left(\prod_{i \in S} A_{i}\right)=\prod_{i \in I} P\left(A_{i}\right)\right)$
$T: \Leftrightarrow A_{1}^{C}, \ldots A_{n}^{C}$ are independent

EXPECTATIONS

DEFINING EXPECTATIONS
In second year we talked about $E(x)$ for A.C discrete as simply y $\int x f(x) d x$. This however is just a computcutianal tool, not an informative definition. It is also not mixed distribution enough, what
about singular or mixed distributions? We also want our def to align with freguentist intuition

For $\mathbb{1}_{A}, A \in \mathscr{F}$ we dine $E(X)=P(A)$
For $x=\sum_{i=1}^{n} a_{i} \|_{A_{i}}$ we define $E(x)=\sum_{i=1}^{n} a_{i} P\left(A_{i}\right)$
Now note that any non-negative R.V can be approximated by an increasing sequence of simple RV. $\left\{X_{n} \xi_{n \geqslant 1}\right.$ in the following way

$$
\forall \omega \in \Omega \quad X_{n}(\omega) \uparrow x(\omega) \quad \ngtr
$$

We will use our curvecit definition of this approximation to define

Where $\left\{x_{n}\right\}_{n \geqslant 1}$
$X \geqslant 0$ arbitrary, $E(X)=\lim _{n \rightarrow \infty} E\left(X_{n}\right)$ is a sequmew as
T This definition is consistent.
Different seywnes will give the same expectation.
ut $X^{+}=\max \{x, 0\} \quad \& x^{-}=-\min \{x, 0\}$
\& Note that for an arbitrary $X=x^{+}-x^{-}$
A R.V. is integrable of $E(|x|)<\infty \Longleftrightarrow x \in C^{\prime}$
If x is integrable $E(x)=E\left(x^{+}\right)-E\left(x^{-}\right)$
The expectation of a R.V. X over an event A is $\quad E(x ; A)=E\left(x \|_{A}\right)$.

UNDERSTANDING EXPECTATION
T: Expectation as a function is

- monotone : $\quad x \leq 4$ \& $E(4)<\infty \Rightarrow E(X) \leq E(4)$
- Linear $\quad \forall a, b \in \mathbb{R}, x, y \in L^{\prime} \Rightarrow E(a x+b y)=a E(x)+b E(y)$

We an denote E using lebesgue integrals

$$
E(X)=\int_{\Omega} X(\omega) \mathbb{P}(d \omega)=\int_{\Omega} X(\omega) d \mathbb{P}(\omega)=\int_{\Omega} X d \mathbb{P}
$$

Moving probability spaces from $(\Omega, \mathcal{F}, \mathbb{P})$ (general)
to $\left(\mathbb{R}^{d}, B\left(\mathbb{R}^{d}\right), P_{x}\right)$ allows as to shift

Notation: $\int g(x) d P_{x}(x)$ often denoted $\int g(x) d F_{x}(x)$
T : If F is A.C with density $f=F^{\prime}$ (a.e) and both $f \$ g$ are piecewise continues then

$$
\int g(x) d F(x)=\int_{-\infty}^{\infty} g(x) f(x) d x
$$

USING EXPECTATIONS
T: $y=g(x) \sim P_{y}, x \sim P_{x} \Rightarrow E(y)=\int g(x) d P_{x}(x)$
T: $x \geqslant 0, E(x)=\int_{0}^{\infty}\left(1-F_{x}(x)\right) d x$
$T: y=g(x)$ for nice $g \Rightarrow E(Y)=\int g(x) d F_{x}(x)$ commonly $\begin{aligned} E(g(x)) & =\int g(x) f_{x}(x) d x \text { for } A C . \\ & =\sum_{t_{i} \in C_{x}} g\left(t_{i}\right) P\left(x=t_{i}\right) .\end{aligned}$
$T: X_{1} \notin X_{2}$ independent \& $y_{i}\left(X_{i}\right)=L$

$$
\Rightarrow E\left(g_{1}\left(x_{1}\right) g_{2}\left(x_{2}\right)\right)=E\left(g_{1}\left(x_{1}\right)\right) E\left(g_{2}\left(x_{2}\right)\right)
$$

inequalities:
T : Jensens: $X \in L^{\prime}, g$ convex $\Rightarrow g[E X] \leqslant E[g(x)]$
$T: L_{\text {yapunov }}: \operatorname{For} 0<r \leq s \quad\left(E\left[|X|^{r}\right]\right)^{\frac{1}{r}} \leq\left(E\left[|X|^{s}\right]\right)^{\frac{1}{s}}$
T :Chebyshew: g positive nondecreasing on $\mathbb{R} \rightarrow \mathbb{R}$

$$
\xrightarrow{\underline{g} \text { positive nondereasing on } \mathbb{R} \rightarrow \mathbb{R}} \quad P(x \geqslant a) \leq \frac{E(g(x))}{g(a)}
$$

T: Cauchy: $E|x y| \leq \sqrt{E\left(x^{2}\right) E\left(y^{2}\right)}$
MOMENTS:
The $k^{\text {th }}$ moment of X is $E\left(X^{k}\right)$
The $k^{\text {th }}$ antral monnet of x is $E\left[(x-E(x))^{k}\right]$
The $2^{\text {nd }}$ central moment is $V(x)=E\left(x^{2}\right)-[E(x)]^{2}$
The mixed moments of $x \leqslant y$ are $E\left(x^{n} y^{m}\right)$
For $x, y \in L^{2} \quad \operatorname{Cov}(x, y)=E[(X-E(x))(y-E(y))]$

$$
=E[x y]-E(x) E(y)
$$

$$
\operatorname{corr}(x, y)=\frac{\operatorname{cov}(x, y)}{\sqrt{v(x) v / y)}}
$$

$$
\Gamma: v(x+y)=v(x)+v(y)+2 \operatorname{cov}(x, y)
$$

$T:|\operatorname{Corr}(x, y)|=1 \Longleftrightarrow P(y=a x+b)=1$ for $a \neq 0, b \in \mathbb{R}$

MURTI-DIMENSION:
when considering R.Vectors $x=\left(x_{1}, \cdots, x_{d}\right) d \geqslant 3$
covariance becomes a matrix-- A row vectors

$$
C_{x}^{2}=\left[\operatorname{Cov}\left(X_{i}, X_{j}\right)\right]=E\left[(X-E(x))^{\top}(x-E(x))\right]
$$

$C_{x}^{2}(i, i)=V\left(x_{i}\right), C_{x}^{2}$ is symmetric, C_{x}^{2} is semi-positive

$$
C_{x}^{2}(i, j)=C_{x}^{2}(j, i) \quad \forall x \in \mathbb{R}^{d} \quad x C_{x}^{2} x^{\top} \geqslant 0
$$

T: If $X=\left(x_{1}, \ldots, x_{n}\right)$ has id components $x_{i} \sim N(0,1)$ $\notin y=\mu+X A, \mu \in \mathbb{R}^{m}, A \in \mathbb{R}^{n \times m}$
$\Rightarrow 4 \sim M V N\left(\mu, A^{\top} A\right)$, For $\eta \sim M V N\left(\mu, c_{y}^{2}\right)$ it

$$
f_{y}(y)=\frac{1}{\sqrt{(2 \pi)^{m} \operatorname{det}\left(C_{y}^{2}\right)}} \exp \left[-\frac{1}{2}(y-\mu)\left[C_{y}^{2}\right]^{-1}(y-\mu)^{\top}\right]
$$

DEFINING CE
when we dent thew anything about a R.N. x our best guess is $E(x)$. What abut it we do knar something about x but not its value, say the cutionce of a related R.N.
CONDITIONAL
EXPECTATIONS
suppose what we knew about the atone
of a rondern experiment is tweet an event A occurred. We define CE in this context as... The conditional Expectation (CE) of R.V. X given event A

$$
\text { is } E(X \mid A)=\frac{E\left(X \|_{A}\right)}{P(A)}
$$

Next consider if we have a partition of $\left\{A_{1}, \ldots, A_{n}\right\}$ of the sample space Ω. If all we know is which of twas events occurred then we hare simply the value of a simple RN. $Y=\sum_{i=1}^{n} y_{i} \|_{A_{i}}$. say y tabes value y_{i}.
our best guess fer X is hen $E\left(X \mid A_{i}\right)$.
since $A_{i}=\left\{y=y_{i}\right\} \quad \hat{x}=E\left(x \mid A_{i}\right)=h(y)$
let $E(x \mid y)=h(y)$. SIMPLE RV.
T Let $x \in L^{\prime} \& Y$ be $R \cdot V$ on common prods space $\Rightarrow \exists \hat{x}$ a R.N satisfying $\quad \hat{x}$ is $\theta R N$ $C E \cdot 1) \hat{x}$ flat an atoms of $\sigma(4)$
$E(X: A)$

$$
C E \cdot 2) E(\hat{X}: A)=E(X: A) \quad \forall A \in \sigma(Y)
$$

That is unique ur to values on sets of zeno probability.
We call this unique R.V $E(x \mid Y)$.
Note if $\mathcal{F} C \sigma(4)$ we replace $C E-1$) with the same condition on \mathcal{F} the thearean is still true, we call this $C E$ of x given σ Alg $\tilde{F} E(x \mid \mathcal{F})$.

PROPERTIES OF CE
$T: \varphi$ is 1-1 function (injective) $\Rightarrow E(X \mid Y)=E(X \mid \varphi(Y))$
$T:$ Linearity: $(\forall a, b \in \mathbb{R})(E(a X+b Z \mid Y)=a E(X \mid y)+b E(Z \mid y))$
T : Monotone: $x \leq Z$ a.s. $\Rightarrow E(X \mid Y) \leq E(Z(Y)$ ass.
$T: Z=g(y) \Rightarrow E(Z \times 14)=Z E(X \mid Y)$
$T: x$ \& y independent $\Rightarrow F(x \mid u)=E(x)$
T : Double \mathbb{E} : $E\left[E\left(x \mid y_{1}, y_{2}\right) \mid y_{1}\right]=E\left(x \mid y_{1}\right)$
In particular $E[E(x \mid y)]=E(x)$.

OTHER CONDITIONALS
conditional probabilities are defined for an event $A \& R N Y(A \mid Y)=E\left(\|_{A} \mid Y\right)$.
Conditional distributions are nen-trivial however it cam be proved that conditional distributions $\quad P_{X \mid Y}(B \mid y)=\mathbb{P}(x \in B \mid Y)=E(\mathbb{1}(x \in B \| Y)$ always exist.

When (x, y) is A.C we can use conditional densities $f_{x, y}(x \mid y)=\frac{f_{x, y}(x, y)}{f_{y}(y)}$
where $\left.f_{x}, y\right)=\int f_{x, y}(x, y) d x$
Thus $E(X \mid Y)=\int x f_{x \mid 4}(x \mid 4) d x$

THE MODEL
For deserved data we mates the ossumptian that the underlying RE is given if $\left(\Omega, \mathcal{F}, T_{G}\right)$. P_{0} is a probability depending on parameter $\theta \in \Theta \subset \mathbb{R}^{1}$ who value use dent know.
We observe a Random vector $X(\omega)=x \in \mathbb{R}^{n}$ P_{θ} is the distribution on $\left(\mathbb{R}^{n}, ß\left(\mathbb{R}^{n}\right)\right)$ induced by $X \& \mathbb{P}_{0}$

BIAS
How can we compare estimators?
We know that there is not a perfect estimator for anything other then the degenerate distribution. ie. $\nexists \theta^{*}$ such that $E\left(\theta^{*}-\theta\right)^{2}$ is minimised $\forall \theta$.
we need to ask fer less, so we compare estimators within certain classes of estimators.
$\theta_{0}^{*} \in \mathcal{R}$, a class of estimators for θ,

A common doss is the class of estimeatere with bins b(θ). $K_{b}=\left\{\theta^{*} \mid E_{\theta}\left(\theta^{*}\right)=\theta+b(\theta), \forall \theta \in \Theta\right\}$.
K_{0} is the class of unbiased estimators.

T: An estimater efficient in K_{b} is unique up to values on a set of 0 probability.
$T:$ Rao-Bluckwell: $\theta^{*} \in K_{b}, S$ a ss for θ
$\Rightarrow \theta_{S}^{*}=E_{\theta}\left(\theta^{*} \mid S\right)$ has properties

- θ_{s}^{*} is a function of S may
- $\theta_{s}^{*} \in \mathcal{K}_{b}$

$$
\cdot E_{\theta}\left(\theta_{s}^{*}-\theta\right)^{2} \leq E_{\theta}\left(\theta^{*}-\theta\right)^{2}, \quad \forall \theta \in \Theta .
$$

For $\theta \in \mathbb{R}^{d}$ we can measure the performance of an estimator using $\bar{E}_{\theta}\left(\theta^{*}-\theta, a\right)$ for $a \in \mathbb{R}^{d}$ where (., 1) is the scalar product. Dispersion. We prefer an estimator if its dispersion is lower $\forall a$.
$T: M V R-B$: same except the last condition now..

$$
\text { - } E_{\theta}\left(\theta_{S}^{*}-\theta, a\right)^{2} \leq E_{\theta}\left(\theta^{*}-\theta, a\right)^{2}, \forall \theta \in \Theta
$$

T : If T is a statistic and $S=\varphi(T)$ for some φ is a ss for $\theta \Longrightarrow T$ is ss fer θ.

T: S a ss for $\theta \Rightarrow \hat{\theta}^{*}$ is a function of S only.

We know what it formally means for a sequance of numbers to connverge What a pint. it man for a sequence of tanctions, speecfically RU.S to canverge to a singhe fanction.

$$
x_{n} \xrightarrow[n \rightarrow \infty]{P} x \Longleftrightarrow(\forall 2>0)\left(P\left(\left|x_{n}-x\right|>\varepsilon\right) \xrightarrow[n \rightarrow \infty]{ } 0\right)
$$

$$
x_{n} \xrightarrow[n \rightarrow \infty]{L^{2}} x \Longleftrightarrow\left(x_{n}, x \in L^{2}\right)\left(E\left(x_{n}-x\right)^{2} \xrightarrow[n \rightarrow \infty]{ } 0\right)
$$

$x_{n} \xrightarrow[n \rightarrow \infty]{i} x \Longleftrightarrow\left(x_{n}, x \in L^{\prime}\right)\left(E\left|x_{n}-x\right| \underset{n \rightarrow \infty}{ } 0\right)$
$x_{n} \xrightarrow[n \rightarrow \infty]{d} x \Longleftrightarrow \lim _{n \rightarrow \infty} F_{x_{n}}(t)=F_{x}(t)$ at all contininity points of F_{x}.
$T: \Longleftrightarrow \forall f$ conlinuous \& bainded $E\left[f\left(x_{n}\right)\right] \Rightarrow E[f(x)]$
RELATIONS BETWEEN CONVERGENE $\xrightarrow{\text { a.s. }} \Rightarrow \xrightarrow{P} \Rightarrow \xrightarrow{d}$
$T: \xrightarrow{L^{2}} \Rightarrow \xrightarrow{p} ;\left(X_{n}, X \in L^{2}\right)\left(\xrightarrow{P} \Rightarrow \xrightarrow{L^{2}}\right)$
IRANSFORMATIONS
$T: g: \mathbb{R} \rightarrow \mathbb{R}$ comtinuous

- $x_{n} \xrightarrow{\text { a.s. }} x \Longrightarrow g\left(x_{n}\right) \xrightarrow{\text { a.s. }} g(x)$
- $x_{n} \xrightarrow{p} x \Rightarrow g\left(x_{n}\right) \xrightarrow{p} g(x)$
- $x_{n} \xrightarrow{d} x \Rightarrow g\left(x_{n}\right) \xrightarrow{d} g(x)$

CONVERGFNCE THMS:
: Manctore Converence: $X_{n} \geqslant 0$ R.Js on a common probability space, $X_{n} \uparrow X \Longrightarrow E\left(X_{n}\right) \uparrow E(X)$

T:Fatous Lumma $\quad X_{n} \geqslant 0 \Rightarrow E\left(\liminf _{n \rightarrow \infty} X_{n}\right) \leq \operatorname{limin}_{n \rightarrow \infty} E E\left(X_{n}\right)$

T: Dominated Convergane: $\left(y_{n}\right)\left(\left|X_{n}\right| \leqslant Y\right.$ a.s. $\left.\& E(4)<\infty\right)$

$$
x_{n} \frac{\text { e.s. }}{n \rightarrow \infty} x \Longrightarrow \lim _{n \rightarrow \infty} E\left(x_{n}\right)=E(x)
$$

$\left\{x_{n}\right\}$ is iid sequence of $B(p)$ R.Vs $S_{n}=\sum_{i=1}^{n} X_{i}$
T: Weak ULN: $\frac{S_{n}}{n} \xrightarrow[n \rightarrow \infty]{p} p$
T: String LLN: $\frac{S_{n}}{n} \frac{\text { as. }}{n \rightarrow \infty} p$

For any R.U. X its characteristic function (ShF)

$$
\therefore \varphi_{x}: \mathbb{R} \rightarrow \mathbb{C}, \varphi_{x}(t)=\mathbb{E}\left(e^{i t x}\right)
$$

Because of this definition the ch always exists, and is finite.
$T:\left|\varphi_{x}(t)\right| \leqslant 1 \quad T: \varphi_{x}(0)=1$
T. $y=a X+b, \quad a, b \in \mathbb{R} \Rightarrow \varphi_{y}(t)=e^{i t b} \varphi_{x}(a t)$.
$T: \overline{\varphi_{x}(t)}=\varphi_{x}(-t)=\varphi_{-x}(t)$
T : ch is real valued $\Longleftrightarrow x$ is symetric $\Longleftrightarrow x \stackrel{d}{=}-x$.
T: Any ChE is uniformly contincerars.
$T: X \notin Y$ independent $\Rightarrow \varphi_{x+y}(t)=\varphi_{x}(t) \varphi_{y}(t)$
$T: k \in \mathbb{N}, E|X|^{k}<\infty \Rightarrow \varphi_{x}(t)$ is k times cont' differentiable

$$
\notin \mathbb{E}\left(x^{k}\right)=\left.i^{-k} \frac{d^{k}}{d t^{k}} \varphi_{x}(t)\right|_{t=0}
$$

T: nversim: $\left|\varphi_{x}(t)\right| d t<\infty \Rightarrow x$ has continuous density

$$
f_{x}(x)=\frac{1}{2 \pi} \int e^{-i t x} \varphi_{x}(t) d t
$$

T: ChE uniquely specify the distribution.
$T: \int\left|t^{k} \varphi_{x}(t)\right| d t<\infty \Rightarrow X$ has h times diff' continuous density
$T: x_{n} \xrightarrow{d} x \longleftrightarrow(\forall t \in \mathbb{R})\left(\varphi_{x_{r}}(t) \rightarrow \varphi_{x}(t)\right)$
$T:(\forall t \in \mathbb{R})\left(\varphi_{x_{n}}(t) \rightarrow \varphi_{x}(t)\right)$ where $\varphi_{x_{n}}$ are $C_{n} F \&$
$\varphi_{x}(t)$ is continuous at $0 \Rightarrow \varphi_{x}$ is dh of some R.U X

$$
\Leftrightarrow X_{n} \xrightarrow{d} X \text {. }
$$

Clearly then the chF contains a lot of information about then distribution. This is why we use them because terry are compact \& have plentiful info-

APPLICATIONS TO STATS
Because of the property that the chE of a sum is the product of oaF, they are convenlent for proofs in statistics about sums.

T:WLLN: X_{1}, X_{2}, \ldots id
$E\left|X_{1}\right|<\infty$$\longrightarrow \frac{\sum_{i=1}^{n} X_{i}}{n} \xrightarrow[n \rightarrow \infty]{P} E\left(X_{1}\right)$
T:CLT: Further $E\left(X_{1}^{2}\right)<\infty$
$\quad \& V\left(X_{1}\right)=\sigma^{2}>0$$\Longrightarrow \frac{\sum_{i=1}^{n} X_{i}-n E\left(X_{1}\right)}{\sigma \sqrt{n}} \xrightarrow[n \rightarrow \infty]{d} N(0,1)$
 general condition. One example is for $E\left(X_{i}\right)=0$ (roseate if nesissarg).
Lyapunov Condition: $B_{n}^{2}=V\left(\sum_{i=1}^{n} X_{i}\right)$, heed wee $B_{n}^{-3} \sum_{i=1}^{n} E\left|X_{i}\right|^{3} \rightarrow 0$.

T: Poisson LT: $X_{n 11}, \ldots, X_{n, n}$ independent R.V.

$$
\begin{aligned}
& P\left(X_{n, j}=1\right)=1-P\left(x_{n, j}=0\right)=p_{n}, j=1, \ldots, n \notin n p_{n} \rightarrow \lambda \in(0, \infty) \\
& \Longrightarrow \sum_{i=1}^{n} X_{n, i} \xrightarrow{d} P(\lambda) .
\end{aligned}
$$

FOR R.VECTORS
$x=\left(x_{1}, \ldots, x_{d}\right), t=\left(t_{1}, \ldots, t_{2}\right) \in \mathbb{R}^{2}$ then

$$
\varphi_{x}: \mathbb{R}^{d} \longrightarrow \mathbb{C}, \varphi_{x}(t)=\mathbb{E}\left(e^{i(t, x)}\right)=\mathbb{E}\left(\exp \left[i \frac{d}{2} t_{j} x_{j}\right]\right)
$$

All bey results carry over.
T: $y=x A+b, A$ a $d x m$ matbix $b \in \mathbb{R}^{n}$

$$
\Rightarrow \varphi_{y}(s)=e^{i(s, b)} \varphi_{x}\left(s A^{\top}\right)
$$

T: $\left(\forall b \in \mathbb{R}^{d}\right)\left(\varphi_{(b, x)} \measuredangle^{\text {projection of } x}=\varphi_{x}(t b)\right)$
T: WLLN \& SLLN
T: CIT: X_{1}, X_{2}, \cdots aid Resect, $E\left\|X_{1}\right\|^{2}<\infty$
$\Rightarrow C_{x}^{2-\text { covariance matrix }}$ exists. $\longrightarrow \frac{\sum_{i=1}^{n} X_{i}-\mu n}{\sqrt{n}} \longrightarrow N\left(0, c_{x}^{2}\right)$
x^{2} testing...?
T: $Z \sim N\left(0, I_{d}\right), b_{1}, \ldots, b_{d}$ orthonominal system

$$
\Longrightarrow y=\left(\left(b_{1}, z\right), \ldots,\left(b_{2}, z\right)\right) \sim N\left(0, I_{d}\right)
$$

For X_{1}, \ldots, X_{n} an ind sample we now that $s=\left(X_{(1,1}, \ldots, x_{(n)}\right)$ is a ss for F, the $D F$ of X_{i}. The same info is captured in the
empirical distribution function

$$
F_{n}^{*}(t)=\frac{1}{n} \sum_{j=1}^{n} \mathbb{1}\left(x_{j} \leqslant t\right)=\frac{1}{n} \sum_{j=1}^{n} \mathbb{1}\left(x_{(j)} \leqslant t\right)
$$

The order stats are all the points of discontinuity of F_{n}^{*} but we can also 7 ind uther statistics.

$$
\begin{aligned}
& \text { also Find uther statistics } \\
& \bar{X}=\int t d F_{n}^{*}(t), s^{2}=\frac{1}{n} \sum_{j=1}^{n}\left(x_{j}-\bar{x}\right)^{2}=\int t^{2} d F_{n}^{*}(t)-\left(\int t d F_{n}^{*}(t)\right)^{2}
\end{aligned}
$$

If there is a parameter $\theta=G(F)$ thin we can have a good estimator given by $\theta^{*}=G\left(F_{n}^{*}\right)$

T: Clivenke-Cantelli: X_{1}, X_{2}, \ldots aid, $D F F$.

$$
\Longrightarrow D_{n}=\sup _{t}\left|F_{n}^{*}(t)^{\prime}-F(t)\right| \xrightarrow{\text { abs. }} 0
$$

T: For X_{1}, X_{12}, \ldots ind $D F F$ \& $U_{1}, U_{2}, \ldots \sim U[0,1]$

$$
\text { \& } R_{n}^{*}(u)=\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\left(U_{j} \leq u\right) \text { uniform } \text { EDE. }
$$

$$
\left.\Longrightarrow D_{n}=\sup _{t}\left|F_{n}^{*}(t)-F(t)\right|=\sup _{u \in[0,1]}\left|R_{n}^{*}\right| u\right)-u \mid \cdot \text { independent }
$$

Further $\sqrt{n}\left(R_{n}^{+}\left(u_{1}\right)-u_{1}, \ldots, R_{n}^{*}\left(u_{d}\right)-u_{d}\right) \longrightarrow N\left(0, C^{2}(u)\right)$

$$
C^{2}(u)=\left[\min \left\{u_{j}, u_{k}\right\}\left(1-\max \left\{u_{j}, u_{k}\right\}\right)\right]_{j, k=1, \ldots, d}
$$

We can use this for
Kolmogarov Test: $\lim _{n \rightarrow \infty} P\left(\sqrt{n} D_{n} \leq x\right)=1+2 \sum_{k=1}^{\infty}(-1)^{k} e^{-2 k^{2} x^{2}}$
Mises-Smirnov ω^{2}-Test: $\omega_{n}^{2} \stackrel{d}{=} \int_{0}^{1}\left[\sqrt{n}\left(R_{n}^{*}(u)-u\right)\right]^{2} d u$

$$
\lim _{n \rightarrow \infty} P\left(w_{n}^{2} \leq x\right)=P\left(\int_{0}^{1} V^{2}(n) d n \leq x\right)
$$

with $\quad V(u) \sim N(0, u(1-u))$

ML's
$X=\left(x_{1}, \ldots, x_{n}\right) \quad x_{j}$ have density $f_{\theta}(x)$ Then the MLE of θ is

$$
\hat{\theta}=\underset{\theta}{\operatorname{argmax}} f_{\theta}(x)=\arg \max _{\theta} \log \left(f_{\theta}(x)\right)
$$

T. Gibbs Inequality: f, g densities with respect to μ, on common
space $\int f(x) \log (f(x)) \mu(d x) \geqslant \int f(x) \log (g(x)) \mu(d x)$
when both integrals are finite.
T: $\hat{\theta}_{n} \xrightarrow{P} \vartheta \underset{\sim}{\text { Tractive }} \& \sqrt{n}\left(\hat{\theta}_{n}-v\right) \xrightarrow{d} N\left(0, \frac{1}{I(v)}\right)$
Where $I(v)=\int \frac{\left[f_{v}^{\prime}(x)\right]^{2}}{f_{v}(x)} \mu(d x)$
T: $E_{v}\left(\theta_{n}^{*}-v\right)^{2} \geqslant \frac{1}{n I(v)}$

